Комитов Борис / BorisP. Komitov
Доктор наук по физике, старший научный сотрудник Института астрономии Национальной астрономической обсерватории “Рожен” Болгарской академии наук / PhD of physics, Associate Professor of Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences. e-mail: jornal@geo-science.ru
Кафтан В.И. / KaftanV.I.
Доктор технических наук, главный научный сотрудник Геофизического центра РАН / Doctor of Tech.Sci., main research worker of Geophysical Center, Russian Academy of Sciences. e-mail: kaftan@geod.ru
[kaltura-widget uiconfid=»535″ entryid=»1_wiab6btx» width=»473″ height=»391″ addpermission=»» editpermission=»» /]
Аннотация. В статье дается оценка состояния солнечной активности на основе анализа временных рядов различных характеристик. Наиболее продолжительные временные ряды представлены наблюдательными данными о полярных сияниях, видимых невооруженным глазом солнечных пятнах, землетрясениях, экстремальных метеорологических событиях, толщине годовых колец деревьев, содержании радиоактивных изотопов в кольцах деревьев, спелеологических объектах, кораллах, континентальных ледниках, океанических осадках и др. В рядах выделены главные колебательные компоненты с периодами близкими к 100, 200, 350 и 1100 годам. Продемонстрирована и обоснована возможность наступления вторичного долгопериодического минимума солнечной активности в текущем столетии. Это ожидается за счет суперпозиции сверхвековых колебательных компонент, а также амплитудной модуляции околодвухсотлетнего цикла со стороны квази- двухтысячелетного (2200-2400 лет) солнечного цикла Халщадтцайта. Сделано обоснованное предположение о вовлечении современной солнечной активности в начальную фазу долгопериодического солнечного минимума, глубочайшая фаза которого ожидается во второй половине текущего столетия. Умеренные амплитуды предыдущего и текущего солнечных циклов также свидетельствуют о начале долгопериодической тенденции понижения солнечной активности.
Ключевые слова: солнечная активность, солнечный минимум, солнечный цикл.
Abstract. In this paper an estimation of the present solar activity state on the base of time series analysis of different parameters is given. The longest presented there time series are data for auroras, naked eye visible sunspots, earthquakes, extremely meteorological events, annual tree ring widths, radioactive isotopes contents in tree rings, speleological objects, corals, continental ices, oceanic sediments etc. The main oscillations with periods close to 100, 200, 350 and 1100 years has been established in these series. The possibility of secondary long term solar activity minimum during the current century is demonstrated and proved. The last one is expected on the base of superposition of supercenturial oscillation components as well as due to amplitude modulation of ~200 yr cycle by the quasi- bimillenial (2200-2400 yr) solar Hallstadtzeit cycle. An substantiated suggestion about involvement of the current solar activity in the starting phase of a long periodic solar minimum, which deepest phase should be expected during the second half of the present century, is made. The moderate amplitudes of the previous and present solar cycles are also an indication for the beginning of long periodic solar activity decreasing.
Keywords: Solar activity, solar minimum, solar cycle
References
- Bard E., Raisbeck G., Yiou F. and Jouzel J., 1997, Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records, Earth and Planet. Sci. Lett., v150, pp453 –462
- Beer J., Blinov B., Bonani G, Finkel R.C., Hofmann H., Lelmann B., Oeschger H., Sigg A., Schwander J., Staffelbath T., Stauffer B., Suter M and Glfli W.,1990, Use of 10Be in polar ice to trace the 1 l-year cycle of solar activity, Nature v347, 16‘-166.
- 3. Beer, J., Tobias, S. and Weiss, N., 1998, An Active Sun throughout the Maunder Minimum, Solar Phys. 181(1), 237–249
- 4. Bonev, B., Penev, K. and Sello, S.: 2004, Long-term solar variability and the solar cycle in the XXI century, Astrophys J. Lett . 81–84
- 6. de Vries H. , 1958, Konikl. Ned. Acad. Wetenshop. v. 861. pp 94-102.
- 7. Dergachev V.A and Chistyakov , 1993., The 210 and 2400 yr oscillations of solar activity and climate, Bul. FTI, p. 112 (in Russian)
- Dergachev, 1994, The radiocarbon crhronometer, Priroda, No1 (in Russian)
- Didkovsky, L., Judge, D., Wieman, S., McMullin, Don: 2009, in Steven R. Cranmer, J. Todd Hoeksema, and John L. Kohl (eds), SOHO-23: Understanding a Peculiar Solar Minimum, ASP CS 428, 73.
- Gleissberg W.,1944, A table of secular variations of the solar cycle, Terr.Magn.Atm.Electr.,v.49
- Hoyt, D. V. and Schatten, K. H., 1998, , Group Sunspots Number: A New Solar Activity Reconstruction , Solar Phys. 181: 491–512
- Kaftan V.I., 1994, Sea level varitions and Earth surface vertical motion in Caspean region. Litospheric tencions (global, regional and local), Moscow, Miner-geological Institure (in Russian)
- Kaftan V.I and Krainev M., 2007, Estimation of the Effect of Solar Activity on the Intensity of Galactic Cosmic Rays, International Journal of Geomagnetism and Aeronomy, v47,No 2, pp 147-159
- Kaftan V.I., 2004, Kinematic Modeling of the Main Solar Cycle, Multi-Wavelength Investigations of Solar Activity, IAU Symposium, Vol. 223. Edited by Alexander V. Stepanov, Elena E. Benevolenskaya, and Alexander G. Kosovichev. Cambridge, UK: Cambridge University Press, 2004., p.111-112
- Komitov B., 1986, The possible influence of solar cycles on the climate of Bulgaria, Bul.Soln.dannie, No 14, p73-78 {in Russian}
- Komitov B. , 1997, The Schove’s series. Centural and Supercentural variations of the solar activity. Relationships between adjacent 11-year cycles, Bulg.Geoph.J,23,74 –82
- Komitov,B. 1997, The Quasi Bicenturial Solar Cycle in Schove’s Series, in proceedings of 2nd National Conference on Solar-Terrestrial Influences, Sofia,p.82 /in Bulgarian/
- Komitov B., 1999, To the problem about stability of centurial and bicenturial solar cycles, in Proceedings of 4th National conference of solar-terrestrial interractions, Sofia, Bulgaria (in Bulgarian)
- Komitov B. and Bonev B., 2001 Amplitude Variations of the 11-year Solat Cycle and the Current Maximum 23, Astrophys. J. Lett v.554,L119-L122, 2001 June 10
- Komitov B. and Kaftan V., 2003 Solar Activity Variations for the Last Millenia. Will the Next Long-Period Solar Minimum be Formed?, International Journal of Geomagnetism and Aeronomy,v.43,No5,2003,pp 553-561
- Komitov B. P and Kaftan V. I. , 2004 The Sunspot Activity in the Last Two Millenia on te Base of Indirect and Instrumental Indexes. Time Serieses Models and Their Extrapolations for the 21st Century, in Proceedings IAUS 223 ‘Multi-Wavelength Investigations of the Solar Activity’, eds. A. V. Stepanov, E. E. Benevolenskaya & A. G. Kosovichev, Cambridge University Press, pp.115-116
- Komitov B., Bonev B., Penev K. and Sello S., 2004, The Solar Activity During the Holocene: Amplitude Variations of Quasy- Century and Quasy-Two-Century Solar Cycles, in Proceedings IAUS 223 ‘Multi-Wavelength Investigations of the Solar Activity’, eds. A. V. Stepanov, E. E. Benevolenskaya & A. G.Kosovichev, Cambridge University Press, pp.705-706
- Komitov B., 2008, Solar forcing over climate in the past and presence. Relations to Bulgaria, Alphamarket, St.Zagora, ISBN 978-954-9483-16-1
- Komitov B., Duchlev P., Stoychev K., Dechev M. and Koleva K., 2010, Sunspot minimum epoch between solar cycles No 23 and 24. Prediction of solar cycle No 24 magnitude, based on «Waldmeier’s rule», eprint arXiv:1008.0375, Bulg.Astron. J., 2011, v.16 in print
- Kopecky M, 1984, preprint (private communication)
- Krivsky L. and Pejml K.,1988, Solar activity, aurorae and climate in Central Europe in the last 1000 years, Bul.Astron. Inst. Chechosl. Acad. Sci.,No75
- Miletsky E., 2003, in Proceedings of International conference «Climatical and ecologycal aspects of solar activity», GAO-RAN,pp 305-313
- Nagovitsyn Yu. and Ogurtsov M., 2003, in Proceedings of International conference «Climatical and ecologycal aspects of solar activity», GAO-RAN,pp 327-332
- Ogurtsov M., 2005, On the Possibility of Forecasting the Sun’s Activity Using Radiocarbon Solar Proxy, Sol. Phys. v.231, pp 167-176
- Rasspopov O.M., Dergachev V.A., Esper J., Kozyreva O., Frank D., Ogurtsov M., Kolstrom T., Shao X., 2008, The influence of the de Vries (∼200-year) solar cycle on climate variations: Results from the Central Asian Mountains and their global link, Paleogeography, Paleoclimatology and Paleoecology, v259 , p16
- Reimer, P.J., et.al.,(2004), INTCAL04 terrestrial radiocarbon age calibration, 0-26 kyr BP, Radiocarbon, Vol. 46, No.3, pp. 1029-1058.
- Sharma M., 2002, Variations in Solar Magnetic Activity in the Last 200 000 years: Is There a Sun-Climatic Connection? , Earth and Planet Sci. Let., v. 199, pp 459-472;
- Schove D.J. ,1983, Sunspot Cycles (Stroudsburg: Hutchinson Ross, Pennsylvania.)
- Schatten, K. H. and Tobiska K., 2003, Solar Activity Heading for a Maunder Minimum?, BAAS, 35 (3), 6.03
- Solanki S. K. Usoskin I. G., Kromer B. , Schussler M. & J. Beer, 2004, Unusual activity of the Sun during recent decades compared to the previous 11,000 years Nature , 431 ,1084-1087
- Stuiver M. and Quay P.D., 1980, Changes in Atmospheric Carbon -14 Attributed to a Variable Sun ,Science, v207,No 44, p26
- 37. Stuiver, M. – Reimer, P. J. 1993: Extended 14C data base and revised CALIB 3.0 14C age calibration program.In: M. Stuiver – A. Long – R. S. Kra eds., Calibration 1993. In: Radiocarbon 35, 215–230.
- Stuiver M., Reimer P. J., Bard E., Beck J. W., Burr G. S., Hughen K. A., Kromer B., McCormac F. G., v. d. Plicht J. and Spurk M.. , 1998, INTCAL98 Radiocarbon Age Calibration, 24,000-cal BP. Radiocarbon 40, 1041-1083
- Vaquero J.M., 2005, Historical Sunspot Observations: A Review (electronic edition)
- Wittman A. D and Xu Z.D., 1987, A catalogue of sunspot observations from 165 BC to AD 1684, Astron. Astrophys., Supl.Ser.70, pp 83-94
- Damon,P. E. and Sonett,C.P., 1991, in The Sun in Time, ed.Sonett.,C.P.,Giampapa,M.S
(с) Komitov B, Kaftan V.I., 2011